Επίσημο σχολικό βιβλίο του Υπουργείου Παιδείας για την σχολική χρονιά 2020 – 2021.Το μάθημα
Άλγεβρα και Στοιχεία Πιθανοτήτων διαπραγματεύεται έννοιες με τις περισσότερες από τις οποίες οι μαθητές έχουν έλθει σε επαφή σε προηγούμενες τάξεις. Στην Α΄ Λυκείου οι μαθητές αντιμετωπίζουν αυτές τις έννοιες σε υψηλότερο επίπεδο, εμβαθύνουν και γενικεύουν. Ειδικότερα, το βιβλίο περιλαμβάνει τα παρακάτω κεφάλαια:
- Εισαγωγή στη θεωρία συνόλων. Οι μαθητές διαπραγματεύονται την έννοια του συνόλου καθώς και σχέσεις και πράξεις μεταξύ συνόλων.
- Στοιχεία πιθανοτήτων. Οι μαθητές έχουν έλθει σε επαφή με την έννοια της πιθανότητας στις προηγούμενες τάξεις με εμπειρικό τρόπο. Στο κεφάλαιο αυτό εισάγονται στην έννοια της πιθανότητας με τον κλασικό ορισμό και εξασκούνται στο βασικό λογισμό πιθανοτήτων με χρήση της θεωρίας συνόλων.
- Πραγματικοί αριθμοί. Οι μαθητές στις προηγούμενες τάξεις έχουν αναπτύξει την έννοια του πραγματικού αριθμού σταδιακά, μέσα από την εισαγωγή των φυσικών, των ακεραίων, των ρητών και των άρρητων αριθμών. Στο κεφάλαιο αυτό επαναλαμβάνουν και εμβαθύνουν στις ιδιότητες του συνόλου των πραγματικών αριθμών με στόχο να βελτιώσουν την κατανόηση της δομής του.
- Εξισώσεις. Οι μαθητές στις προηγούμενες τάξεις έχουν αντιμετωπίσει εξισώσεις πρώτου βαθμού. Στο κεφάλαιο αυτό μελετούν συστηματικά και διερευνούν αυτές τις εξισώσεις καθώς και εξισώσεις δευτέρου βαθμού.
- Ανισώσεις. Οι μαθητές στις προηγούμενες τάξεις έχουν αντιμετωπίσει ανισώσεις πρώτου βαθμού. Στο κεφάλαιο αυτό μελετούν συστηματικά και διερευνούν αυτές τις ανισώσεις καθώς και ανισώσεις δευτέρου βαθμού.
- Πρόοδοι. Οι μαθητές στο Δημοτικό και στο Γυμνασιο έχουν ασχοληθεί με κανονικότητες (patterns). Στο κεφάλαιο αυτό εισάγονται στην έννοια της ακολουθίας πραγματικών αριθμών και μελετούν ειδικές περιπτώσεις κανονικότητας ακολουθιών, την αριθμητική και τη γεωμετρική πρόοδο.
- Βασικές έννοιες των συναρτήσεων. Οι μαθητές έχουν αντιμετωπίσει την έννοια της συνάρτησης στο Γυμνάσιο κυρίως με εμπειρικό τρόπο. Στο κεφάλαιο αυτό εισάγονται, μέσω των αντίστοιχων ορισμών, στην έννοια, στα βασικά στοιχεία και στη γραφική παράσταση μιας συνάρτησης.
- Μελέτη βασικών συναρτήσεων. Οι μαθητές σε προηγούμενες τάξεις έχουν μελετήσει γραμμικές συναρτήσεις και παραβολές της μορφής ψ = αx2. Στο κεφάλαιο αυτό μελετούν και άλλες ιδιότητες γραμμικών συναρτήσεων και παραβολών της μορφής ψ = αx2. Επίσης, με αφετηρία την ψ=αx2, κατασκευάζουν και μελετούν τη γραφική παράσταση της πολυωνυμικής συνάρτησης δευτέρου βαθμού f(x)= αx2 + βx + γ.
Η διδασκαλία των Μαθηματικών στην Α΄ Λυκείου έχει δύο κεντρικούς στόχους. Την ολοκλήρωση της μαθηματικής εκπαίδευσης που οι μαθητές απέκτησαν στο Δημοτικό και στο Γυμνάσιο και ταυτόχρονα το πέρασμα σε έναν πιο προωθημένο, θεωρητικό μαθηματικό τρόπο σκέψης. Βασικά στοιχεία αυτού του τρόπου σκέψης είναι η «αυστηρή» χρήση μαθηματικής ορολογίας και συμβολισμού, οι ορισμοί των εννοιών και η θεωρητική απόδειξη των ισχυρισμών.
Στην προσέγγιση αυτών των στόχων συμβάλλουν:
- Η ένταξη των προϋπαρχουσών μαθηματικών γνώσεων των μαθητών σ’ ένα θεωρητικό πλαίσιο, η επέκταση και η εμβάθυνσή τους.
- Η ενεργητική εμπλοκή των μαθητών στη διερεύνηση προβλημάτων, στη δημιουργία και τον έλεγχο εικασιών, στην ανάπτυξη στρατηγικών επίλυσης προβλήματος και πολλαπλών αποδεικτικών προσεγγίσεων, στην ανάπτυξη διάφορων τρόπων σκέψης (επαγωγική, παραγωγική).
- Η κατανόηση και χρήση της μαθηματικής γλώσσας, των συμβόλων και των αναπαραστάσεων των μαθηματικών αντικειμένων, η ανάπτυξη της ικανότητας μετάφρασης από τη φυσική στη μαθηματική γλώσσα και αντίστροφα καθώς και η ανάπτυξη της ικανότητας των μαθητών να επικοινωνούν μαθηματικά.
- Οι εννοιολογικές συνδέσεις εντός των Μαθηματικών αλλά και μεταξύ των Μαθηματικών και άλλων γνωστικών περιοχών.
- Η ανάπτυξη ικανοτήτων χρήσης των Μαθηματικών ως εργαλείο κατανόησης και ερμηνείας του κόσμου.
- Η θεώρηση των Μαθηματικών ως πολιτισμικό, ιστορικά εξελισσόμενο ανθρώπινο δημιούργημα.
Πηγή: Υπουργείο Παιδείας & Θρησκευμάτων
stelios-marios
stelios-marios
stelios-marios
stelios-marios
Ιωαννα
Ιωαννα
Ιωαννα
Ιωαννα
ΑΝΔΡΕΑΣ
ΑΝΔΡΕΑΣ
ΣΠΥΡΟΣ
ΣΠΥΡΟΣ
ΝΙΚΟΣ
ΝΙΚΟΣ
UserP
UserP